209. Minimum Size Subarray Sum
Given an array of positive integers nums and a positive integer target, return the minimal length of a
subarray whose sum is greater than or equal to target. If there is no such subarray, return 0 instead.
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Example 3:
Constraints:
1 <= target <= 1091 <= nums.length <= 1051 <= nums[i] <= 104
Follow up: If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log(n)).
Solution:
class Solution {
public int minSubArrayLen(int target, int[] nums) {
// mininal windown (>= target )
int left = 0;
int right = 0;
int minLength = Integer.MAX_VALUE;
int n = nums.length;
int cur = 0; // curWindow sum
while(right < n){
int curRight = nums[right];
cur = cur + curRight;
while(cur >= target){
minLength = Math.min(minLength, right - left + 1);
cur = cur - nums[left];
left++;
}
right++;
}
// TC: O(2n)
if (minLength == Integer.MAX_VALUE){
return 0;
}else{
return minLength;
}
}
}
// TC: O(n)
// SC: O(1)
function minSubArrayLen(target: number, nums: number[]): number {
// Goal: find the minimum length of a contiguous subarray
// where the sum is greater than or equal to the target
let left = 0;
let right = 0;
let minLength = Number.MAX_SAFE_INTEGER;
let cur = 0;
while(right < nums.length){
cur = cur + nums[right];
while(cur >= target){
minLength = Math.min(minLength, right - left + 1);
cur = cur - nums[left];
left++;
}
right++;
}
return minLength === Number.MAX_SAFE_INTEGER ? 0 : minLength;
};
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int result = Integer.MAX_VALUE;
int left = 0;
int curSum = 0;
for (int right = 0; right < nums.length; right++){
curSum = curSum + nums[right];
while(curSum >= target){
result = Math.min(result, right - left + 1);
curSum = curSum - nums[left];
left++;
}
}
if (result == Integer.MAX_VALUE){
return 0;
}else{
return result;
}
}
}
// TC: O(n)
// SC: O(1)
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int result = Integer.MAX_VALUE;
int left = 0;
int curSum = 0;
for (int right = 0; right < nums.length; right++){
curSum = curSum + nums[right];
while(curSum - nums[left] >= target){
curSum = curSum - nums[left];
left++;
}
if (curSum >= target){
result = Math.min(result, right - left + 1);
// suppose right == left -> 1 -> +1
}
}
if (result == Integer.MAX_VALUE){
return 0;
}else{
return result;
}
}
}
// TC: O(n)
// SC: O(1)