97. Interleaving String
Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2.
An interleaving of two strings s and t is a configuration where s and t are divided into n and m
substrings respectively, such that:
s = s1 + s2 + ... + snt = t1 + t2 + ... + tm|n - m| <= 1- The interleaving is
s1 + t1 + s2 + t2 + s3 + t3 + ...ort1 + s1 + t2 + s2 + t3 + s3 + ...
Note: a + b is the concatenation of strings a and b.
Example 1:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation: One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.
Example 2:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.
Example 3:
Constraints:
0 <= s1.length, s2.length <= 1000 <= s3.length <= 200s1,s2, ands3consist of lowercase English letters.
Follow up: Could you solve it using only O(s2.length) additional memory space?
Solution:
Recursion
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
int n = s1.length();
int m = s2.length();
// If the total length doesn't match, it cannot be interleaving
if (n + m != s3.length()){
return false;
}
return dfs(n - 1, m -1, s1.toCharArray(), s2.toCharArray(), s3.toCharArray());
}
private boolean dfs(int i, int j, char[] s1, char[] s2, char[] s3){
// If both s1 and s2 are fully used, it's a valid interleaving
if (i < 0 && j < 0){
return true;
}
boolean res = false;
// Try using s1's last character
if (i >= 0 && s1[i] == s3[i + j + 1]){
if (dfs(i - 1, j, s1, s2, s3)){
return true;// If successful, return immediately
}
}
// Try using s2's last character
if (j >= 0 && s2[j] == s3[i + j + 1]){
if (dfs(i, j - 1, s1, s2, s3)){
return true;
}
}
return false;
}
}
// TC: O(2^(M+N))
// SC: O(M+N)
At each step, you may branch into two recursive calls:
- one using
s1 - one using
s2
Recursion + Memo
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
int n = s1.length();
int m = s2.length();
if (n + m != s3.length()){
return false;
}
// 字符串 注意 空
int[][] memo = new int[n + 1][m + 1];
for (int[] row : memo){
Arrays.fill(row, -1);
}
return dfs(n - 1, m -1, s1.toCharArray(), s2.toCharArray(), s3.toCharArray(), memo);
}
private boolean dfs(int i, int j, char[] s1, char[] s2, char[] s3, int[][] memo){
if (i < 0 && j < 0){
return true;
}
if (memo[i + 1][j + 1] != -1){
if (memo[i + 1][j + 1] == 1){
return true;
}else{
return false;
}
}
boolean res = false;
if (i >= 0 && s1[i] == s3[i + j + 1]){
if (dfs(i - 1, j, s1, s2, s3, memo)){
res = true;
memo[i + 1][j + 1] = 1;
}
}
if (!res && j >= 0 && s2[j] == s3[i + j + 1]){
if (dfs(i, j - 1, s1, s2, s3, memo)){
res = true;
memo[i + 1][j + 1] = 1;
}
}
if (memo[i + 1][j + 1] == -1){
memo[i+1][j + 1] = 0;
}
return res;
}
}
// TC: O(m * n)
// SC: O(m * n)
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
if (s1.length() + s2.length() != s3.length()){
return false;
}
Boolean[][] memo = new Boolean[s1.length() + 1][s2.length() + 1];
return helper(s1, s2, 0, 0, s3, memo);
}
private boolean helper(String s1, String s2, int i1, int i2, String s3, Boolean[][] memo){
if (i1 == s1.length() && i2 == s2.length()){
return true;
}
if (memo[i1][i2] != null){
return memo[i1][i2];
}
Boolean valid = false;
if (i1 < s1.length() && s1.charAt(i1) == s3.charAt(i1 + i2)){
valid = helper(s1, s2, i1 + 1, i2, s3, memo);
}
if (!valid && i2 < s2.length() && s2.charAt(i2) == s3.charAt(i1+i2)){
valid = helper(s1, s2, i1, i2+ 1, s3, memo);
}
memo[i1][i2] = valid;
return valid;
}
}
// TC: O(n*m)
// SC: O(n*m)