63. Unique Paths II
You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.
An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle.
Return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The testcases are generated so that the answer will be less than or equal to 2 * 109.
Example 1:

Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
Output: 2
Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
Example 2:

Constraints:
m == obstacleGrid.lengthn == obstacleGrid[i].length1 <= m, n <= 100obstacleGrid[i][j]is0or1.
Solution:
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int n = obstacleGrid.length;
int m = obstacleGrid[0].length;
return dfs(n - 1, m - 1, obstacleGrid);
}
private int dfs(int i, int j, int[][] nums){
if (i < 0 || j < 0 || nums[i][j] == 1){
return 0;
}
if (i == 0 && j == 0){
return 1;
}
return dfs(i-1, j, nums) + dfs(i, j-1, nums);
}
}
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int n = obstacleGrid.length;
int m = obstacleGrid[0].length;
int[][] memo = new int[n][m];
for (int[] row : memo){
Arrays.fill(row, -1);
}
return dfs(n - 1, m - 1, obstacleGrid, memo);
}
private int dfs(int i, int j, int[][] nums, int[][] memo){
if (i < 0 || j < 0 || nums[i][j] == 1){
return 0;
}
if (i == 0 && j == 0){
return 1;
}
if (memo[i][j] != -1){
return memo[i][j];
}
return memo[i][j] = dfs(i-1, j, nums, memo) + dfs(i, j-1, nums, memo);
}
}
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int n = obstacleGrid.length;
int m = obstacleGrid[0].length;
int[][] memo = new int[n + 1][m + 1];
// for (int[] row : memo){
// Arrays.fill(row, -1);
// }
for(int i = 0; i < n; i++){
memo[i][0] = 0;
}
for (int j = 0; j < m; j++){
memo[0][j] = 0;
}
for (int i = 0; i < n; i++){
for (int j = 0; j < m; j++){
if (obstacleGrid[i][j] == 1){
memo[i][j] = 0;
}else if (i == 0 && j == 0){
memo[i + 1][j +1] = 1;
}else{
memo[i + 1][j + 1] = memo[i][j + 1] + memo[i + 1][j];
}
}
}
return memo[n][m];
// return dfs(n - 1, m - 1, obstacleGrid, memo);
}
}