Skip to content

136. Single Number

Given a non-empty array of integers nums, every element appears twice except for one. Find that single one.

You must implement a solution with a linear runtime complexity and use only constant extra space.

Example 1:

Input: nums = [2,2,1]
Output: 1

Example 2:

Input: nums = [4,1,2,1,2]
Output: 4

Example 3:

Input: nums = [1]
Output: 1

Constraints:

  • 1 <= nums.length <= 3 * 104
  • -3 * 104 <= nums[i] <= 3 * 104
  • Each element in the array appears twice except for one element which appears only once.

Solution:

Using the property of the XOR operation \(a \oplus a = 0\), we can use XOR to "cancel out" all elements that appear twice -- leaving only the elemnt that appears once.

For example, give \(nums = [4, 1, 2, 1, 2]\), if we XOR all the elements: $$ 4 \oplus 1 \oplus 2 \oplus 1 \oplus2 = 4 \oplus (1 \oplus 1) \oplus (2 \oplus 2)=4 \oplus 0 \oplus 0=4 $$ Here we used two important XOR properties:

  • Commutative law: $a \oplus b = b \oplus a $
  • Associative law: \((a \oplus b) \oplus c = a \oplus (b \oplus c)\)

In the code, intializing \(ans = 0\) works because \(0 \oplus a = a\), which is equivalent to starting from the first number and XORing all other numbers one by one.

class Solution {
    public int singleNumber(int[] nums) {
        Set<Integer> set = new HashSet<Integer>();
        for (int i = 0; i < nums.length; i++){
            if (!set.contains(nums[i])){
                set.add(nums[i]);
            }else{
                set.remove(nums[i]);
            }

        }

        for (int i : set){
            return i;

        }

        return -1;

    }
}

// TC: O(n)
// SC: O(n)
class Solution {
    public int singleNumber(int[] nums) {
        int result = 0;
        for (int i = 0; i < nums.length; i++){
            result = nums[i] ^ result;
        }
        return result;
    }
}
// TC: O(n)
// SC: O(1)

// 0000000
//  1 ^ 1  xor = 0