1143. Longest Common Subsequence
Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
- For example,
"ace"is a subsequence of"abcde".
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
Solution:
一、递归搜索 + 保存计算结果 = 记忆化搜索
启发思路: 子序列



class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char[] s = text1.toCharArray();
char[] t = text2.toCharArray();
int n = s.length;
int m = t.length;
int index1 = n - 1;
int index2 = m - 1;
return dfs(index1, index2, t, s);
}
private int dfs(int index1, int index2, char[] t, char[] s){
if (index1 < 0 || index2 < 0){
return 0;
}
if (s[index1] == t[index2]){
return dfs(index1 - 1, index2 - 1, t, s) + 1;
}
return Math.max(dfs(index1 - 1, index2, t, s), dfs(index1, index2 - 1, t, s));
}
}
// TC: O(n!)
// SC: O(n)
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char[] s = text1.toCharArray();
char[] t = text2.toCharArray();
int n = s.length;
int m = t.length;
int index1 = n - 1;
int index2 = m - 1;
int[][] memo = new int[n][m];
for (int[] row : memo){
Arrays.fill(row, -1);
}
return dfs(index1, index2, t, s, memo);
}
private int dfs(int index1, int index2, char[] t, char[] s, int[][] memo){
if (index1 < 0 || index2 < 0){
return 0;
}
if (memo[index1][index2] != -1){
return memo[index1][index2];
}
if (s[index1] == t[index2]){
return memo[index1][index2] = dfs(index1 - 1, index2 - 1, t, s, memo) + 1;
}
return memo[index1][index2] = Math.max(dfs(index1 - 1, index2, t, s, memo), dfs(index1, index2 - 1, t, s, memo));
}
}
// TC: O(n * m)
// SC: O(n * m)
二、1:1 翻译成递推

class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char[] s = text1.toCharArray();
char[] t = text2.toCharArray();
int n = s.length;
int m = t.length;
int index1 = n - 1;
int index2 = m - 1;
// int[][] memo = new int[n][m];
// for (int[] row : memo){
// Arrays.fill(row, -1);
// }
// return dfs(index1, index2, t, s, memo);
int[][] f = new int[n + 1][m + 1];
for (int i = 0; i < n; i++){
for (int j = 0; j < m; j++){
if (s[i] == t[j]){
f[i + 1][j + 1] = f[i][j] + 1;
}else{
f[i + 1][j + 1] = Math.max(f[i][j+ 1], f[i+ 1][j]);
}
}
}
return f[n][m];
}
private int dfs(int index1, int index2, char[] t, char[] s, int[][] memo){
if (index1 < 0 || index2 < 0){
return 0;
}
if (memo[index1][index2] != -1){
return memo[index1][index2];
}
if (s[index1] == t[index2]){
return memo[index1][index2] = dfs(index1 - 1, index2 -1, t, s, memo) + 1;
}
// dfs(i-1, j -1)+1
return memo[index1][index2] = Math.max(dfs(index1 - 1, index2, t, s, memo), dfs(index1, index2 - 1, t, s, memo));
// max(dfs(i-1, j), dfs(i, j-1))
// f[i][j] ={
// s[i] = t[j] f[i-1][j-1] + 1
// s[i] != t[j] Math.max(f[i-1][j], f[i][j-1])
// }
// f[i + 1][j+ 1] ={
// s[i] = t[j] f[i][j] + 1
// s[i] != t[j] Math.max(f[i][j + 1], f[i+ 1][j])
}
}
// TC: O(n*m)
// SC: O(n*m)
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int[][] longest = new int[text1.length()+1][text2.length() +1];
for (int i = 1; i <= text1.length(); i++){
for (int j = 1; j <= text2.length(); j++){
if (text1.charAt(i - 1) == text2.charAt(j-1)){
longest[i][j] = longest[i-1][j-1] + 1;
} else {
longest[i][j] = Math.max(longest[i - 1][j], longest[i][j-1]);
}
}
}
return longest[text1.length()][text2.length()];
}
}
// TC: O(n^2)
// SC: O(n^2)
/*
i
- a b c
- 0 0 0 0
d 0 0 0 0 j
e 0 0 0 0
f 0 0 0 0
a 0 1 0 0
f 0 1 1 1
c 0 1 1 2
M[i-1][j] is from
1 + M[i - 1][j - 1] > M[i-1][j-1]
Math.max(M[i-2][j], M[i-1][j-1]) >= M[i-1][j-1]
res = dp[n][m] -> 一直在继承, 从来没有东山再起
*/
M[i][j] represents the length of the longest subsequences between a[0... i -1] (first i letters of a) and b[0 ... j -1] (first j letters of b)
M[i][j -1]
M[i - 1][j]
Base case
M[0][0] = 0
M[i][0] = 0
M[0][j] = 0
Induction rule
Case 1: M[i][j] = 1 + M[i -1][j -1] if a[i - 1] == b[j-1]
Case 2: M[i][j] = max(M[i -1][j], M[i][j -1]) else a[i-1] != b[j-1]
TC: O(n*m) * O(1) =O(n*m)
SC: O(n * m) => optimize O(n)
三 空间优化:两个数组(滚动数组)
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char[] s = text1.toCharArray();
char[] t = text2.toCharArray();
int n = s.length;
int m = t.length;
int index1 = n - 1;
int index2 = m - 1;
// int[][] memo = new int[n][m];
// for (int[] row : memo){
// Arrays.fill(row, -1);
// }
// return dfs(index1, index2, t, s, memo);
// int[][] f = new int[n + 1][m + 1];
// for (int i = 0; i < n; i++){
// for (int j = 0; j < m; j++){
// if (s[i] == t[j]){
// f[i + 1][j + 1] = f[i][j] + 1;
// }else{
// f[i + 1][j + 1] = Math.max(f[i][j+ 1], f[i+ 1][j]);
// }
// }
// }
// return f[n][m];
int[][] f = new int[2][m + 1];
for (int i = 0; i < n; i++){
for (int j = 0; j < m; j++){
if (s[i] == t[j]){
f[(i + 1) % 2][j + 1] = f[i % 2][j] + 1;
}else{
f[(i + 1) % 2][j + 1] = Math.max(f[i % 2][j + 1], f[(i + 1) % 2][j]);
}
}
}
return f[n % 2][m];
}
}
// TC: O(mn)
// SC: O(m)
空间优化:一个数组
答疑 问:为什么 j 不能倒序循环?
答:本题 \(f[i+1][j+1]\) 需要从 \(f[i+1][j]\) 转移过来,这只能正序枚举 j。倒序枚举的话,\(f[i+1][j]\) 还没有计算出来。

class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char[] s = text1.toCharArray();
char[] t = text2.toCharArray();
int n = s.length;
int m = t.length;
int index1 = n - 1;
int index2 = m - 1;
// int[][] f = new int[2][m + 1];
// for (int i = 0; i < n; i++){
// for (int j = 0; j < m; j++){
// if (s[i] == t[j]){
// f[(i + 1) % 2][j + 1] = f[i % 2][j] + 1;
// }else{
// f[(i + 1) % 2][j + 1] = Math.max(f[i % 2][j + 1], f[(i + 1) % 2][j]);
// }
// }
// }
// return f[n % 2][m];
int[] f = new int[m + 1];
for (int i = 0; i < n; i++){
int pre = f[0];
for (int j = 0; j < m; j++){
int tmp = f[j + 1];
if (s[i] == t[j]){
f[j + 1] = pre + 1;
}else{
f[j + 1] = Math.max(f[j + 1], f[j]);
}
pre = tmp;
}
}
return f[m];
}
}
// TC: O(nm)
// SC: O(m)
https://www.bilibili.com/video/BV1TM4y1o7ug/?vd_source=73e7d2c4251a7c9000b22d21b70f5635