102. Binary Tree Level Order Traversal
Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).
Example 1:

Example 2:
Example 3:
Solution:
Tree里头关于层有关的请优先想到BFS, queue








方法一:两个数组
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null){
return result;
}
List<TreeNode> cur = new ArrayList<>();
cur.add(root);
while(cur.size() > 0){
List<TreeNode> nxt = new ArrayList<>();
List<Integer> subResult = new ArrayList<>();
for (TreeNode node : cur){
subResult.add(node.val);
if (node.left != null){
nxt.add(node.left);
}
if (node.right != null){
nxt.add(node.right);
}
}
cur = nxt;
result.add(subResult);
}
return result;
}
}
//TC: O(n)
//SC: O(n)
时间复杂度:O(n),其中 n 为二叉树的节点个数。虽然写了个二重循环,但每个节点只会添加到列表中一次,所以总的循环次数是节点个数之和,即 O(n)。 空间复杂度:O(n)。满二叉树(每一层都填满)最后一层有大约 n/2 个节点,因此数组中最多有 O(n) 个元素,所以空间复杂度是 O(n) 的。
方法二:一个队列







/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null){
return result;
}
Deque<TreeNode> queue = new ArrayDeque<>();
queue.offerLast(root);
while(!queue.isEmpty()){
int size = queue.size();
List<Integer> subResult = new ArrayList<>();
for(int i = 0; i < size; i++){
TreeNode cur = queue.pollFirst();
subResult.add(cur.val);
if (cur.left != null){
queue.offerLast(cur.left);
}
if (cur.right != null){
queue.offerLast(cur.right);
}
}
result.add(subResult);
}
return result;
}
}
// TC: O(n)
// SC: O(n)
DFS:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
int index = 0;
dfs(root, index, result);
return result;
}
private void dfs(TreeNode root, int index, List<List<Integer>> result){
if (root == null){
return;
}
if (index >= result.size()){
result.add(new ArrayList<Integer>());
}
result.get(index).add(root.val);
dfs(root.left, index + 1, result);
dfs(root.right, index + 1, result);
}
}
// TC: O(n)
// SC: O(n)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if (root == null){
return result;
}
int index = 0;
dfs(root, index, result);
return result;
}
private void dfs (TreeNode root, int index, List<List<Integer>> result){
if (root == null){
return;
}
if (index >= result.size()){
result.add(new ArrayList<Integer>());
}
result.get(index).add(root.val);
dfs(root.left, index + 1, result);
dfs(root.right, index + 1, result);
}
}
// TC: O(n)
// SC: O(n)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if (root == null){
return result;
}
int index = 0;
DFS(root, index, result);
return result;
}
private void DFS(TreeNode root, int index, List<List<Integer>> result){
// base case
if (root == null){
return;
}
if (index >= result.size()){
result.add(new ArrayList<Integer>());
}
result.get(index).add(root.val);
DFS(root.left, index + 1, result);
DFS(root.right, index +1 , result);
}
}
// TC: O(n)
// SC: O(n)
Tree的题 代码答案不难理解, 单纯让你想思路 感觉很容易无从下手的感觉 -> 但基本上都要遍历